Abstract

A similarity between the polymerization reaction of molecules and the self-assembly of nanoparticles provides a unique way to reliably predict structural characteristics of nanoparticle ensembles. However, the quantitative elucidation of programmable self-assembly kinetics of DNA-encoded nanoparticles is still challenging due to the existence of hybridization and dehybridization of DNA strands. Herein, a joint theoretical-computational method is developed to explicate the mechanism and kinetics of programmable self-assembly of limited-valence nanoparticles with surface encoding of complementary DNA strands. It is revealed that the DNA-encoded nanoparticles are programmed to form a diverse range of self-assembled superstructures with complex architecture, such as linear chains, sols, and gels of nanoparticles. It is theoretically demonstrated that the programmable self-assembly of DNA-encoded nanoparticles with limited valence generally obeys the kinetics and statistics of reversible step-growth polymerization originally proposed in polymer science. Furthermore, the theoretical-computational method is applied to capture the programmable self-assembly behavior of bivalent DNA-protein conjugates. The obtained results not only provide fundamental insights into the programmable self-assembly of DNA-encoded nanoparticles but also offer design rules for the DNA-programmed superstructures with elaborate architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call