Abstract

Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state are novel tools for monitoring intracellular protein trafficking. A codon-optimized variant of the reversibly photoswitchable fluorescent protein DRONPA was designed for the use in transgenic Arabidopsis plants. Its codon usage is also well adapted to the mammalian codon usage. The synthetic protein, DRONPA-s, shows photochemical properties and switching behavior comparable to that of the original DRONPA from Pectiniidae both in vitro and in vivo. DRONPA-s fused to the RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein 7) under control of the endogenous AtGRP7 promoter localizes to cytoplasm, nucleoplasm and nucleolus of transgenic Arabidopsis plants. To monitor the intracellular transport dynamics of AtGRP7-DRONPA-s, we set up a single-molecule sensitive confocal fluorescence microscope. Fluorescence recovery after selective photoswitching experiments revealed that AtGRP7-DRONPA-s reaches the nucleus by carrier-mediated transport. Furthermore, photoactivation experiments showed that AtGRP7-DRONPA-s is exported from the nucleus. Thus, AtGRP7 is a nucleocytoplasmic shuttling protein. Our results show that the fluorescent marker DRONPA-s is a versatile tool to track protein transport dynamics in stably transformed plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.