Abstract

We present experimental and theoretical study of refractive index modification induced by femtosecond laser pulses in photorefractive crystals. The single pulses with central wavelength of 800 nm, pulse duration of 150 fs, and energy in the range of 6-130 nJ, tightly focused into the bulk of Fe-doped LiNbO<sub>3</sub> and stoichiometric LiTaO<sub>3</sub> crystals induce refractive index change of up to about 10<sup>-3</sup> within the volume of about (2.0 x 2.0 x 8.0) &mu;m<sup>3</sup>. The photomodification is independent of the polarization orientation with respect to the crystalline c-axis. The recorded region can be erased optically by a defocused low-intensity single pulse of the same laser. Recording and erasure can be repeated at the same position many times without loss of quality. These findings demonstrate the basic functionality of the ultrafast three-dimensional all-optical rewritable memory. Theoretically they are interpreted by taking into account electron photogeneration and recombination as well as formation of a space-charge field. The presented analysis indicates dominant role of photovoltaic effect for our experimental conditions, and suggests methods for controlling various parameters of the photomodified regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.