Abstract

Spatiotemporal control over the regulation of intra- and intermolecular motions in naturally occurring systems is systematically studied to expand the toolbox of mechanical operations in multicomponent nanoarchitectures. DNA is ideally suited for programming light-powered processes that are based on a minimalist molecular design. Here, the noncovalent incorporation of bistable photoswitches into B-like DNA moieties is shown to trigger the thermal transition midpoint of the duplexes by converting visible light into directed mechanical work by orchestrating the collective actions of the photoresponsive chromophores and the host DNA nanostructures. Besides its practical applications, the resulting hybrid nanosystem bears unique features of modulability, biocompatibility, reversibility, and addressability, which are key components for developing molecular photon-controlled programmed materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call