Abstract

AbstractPhotochromic molecule‐incorporated optical devices offer desirable properties for photocontrollable optical systems, including advanced optical data storage and super‐resolution imaging. However, these molecules require multiple illumination sources, such as UV and visible light, for reversible photochemical reactions, which restricts their potential for advanced application. This study reports an effective strategy for modulating photoisomerization via a single near‐infrared light source assisted by plasmonically enhanced photoswitchable upconversion photoluminescence (UCPL). The proposed quasi‐periodic metal nanostructures to facilitate the resonance modes in the broadband region enable the substitution of the detrimental high‐energy light source (i.e., UV light) with near‐infrared stimuli, which is associated with UCPL enhancement of over two orders with spectrum orthogonality. To validate this concept, the accelerated reversible‐photoisomerization kinetics is experimentally confirmed by three‐ and tenfold amplification of the PL intensities of the photochromic disulfonyldiarylethene derivatives. Further validation of the proposed strategy is performed using photodynamic imaging, which reveals accelerated photoisomerization, high photocyclization stability, and high spatial resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.