Abstract

Upon addition of a chiral dopant to a nematic liquid crystal, amplification of molecular chirality can occur and consequently a cholesteric liquid crystal is formed. A major challenge in materials science consists in designing efficient chiral dopants that allow for control over chiral amplification by use of an external trigger, for example by irradiation with light, and thereby achieving the control of the dynamic and responsive structure of cholesteric liquid crystals. Here, a chiral photochromic switch bearing two chiral imine units connected viaphenyl spacers was synthesized and characterized in solution, where it can be photo-chemically converted from a colourless ring-opened form 1o to a coloured ring-closed form 1c, reversibly. We show that a small amount of 1o used as a dopant induces the formation of a stable cholesteric liquid crystal. The retention of the photochromic properties of 1, when used as a chiral dopant, allows for reversible photocontrol over the period of the cholesteric helix, and shows the highest values of helical twisting power achieved so far with diarylethene-based photoswitchable dopants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call