Abstract

Protein-protein interactions are highly dynamic biological processes that regulate various cellular reactions. They exhibit high specificity and spatiotemporal control in order to efficiently utilize finite resources in a cellular compartment. Photoactivatable chemically inducible dimerization (pCID) has emerged as an attractive technique in the scientific community, leading to the development of systems that can be activated with various wavelengths of light in order to manipulate processes on biologically relevant scales with molecular specificity. These systems can be modified to control various protein functions with unprecedented precision and spatiotemporal resolution. In this chapter, we describe an optogenetic platform that provides reversible control over dimerization of genetically tagged proteins using orthogonal wavelengths of light. We demonstrate photoactivation and photo-reversal of protein localization and transport. Mitosis is manipulated by activating and silencing the spindle assembly checkpoint through recruitment and release of proteins from kinetochores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.