Abstract

The 2-bit Lindqvist-type polyoxometalate (POM) [V6O13((OCH2)3CCH2N3)2]2- with a diamagnetic {V6O19} core and azide termini shows six fully oxidized VV centers in solution as well as the solid state, according to 51V NMR spectroscopy. Under UV irradiation, it exhibits reversible switching between its ground S0 state and the energetically higher lying states in acetonitrile and water solutions. TD-DFT calculations demonstrate that this process is mainly initialized by excitation from the S0 to S9 state. Pulse radiolysis transient absorption spectroscopy experiments with a solvated electron point out photochemically induced charge disproportionation of VV into VIV and electron communication between the POM molecules via their excited states. The existence of this unique POM-to-POM electron communication is also indicated by X-ray photoelectron spectroscopy (XPS) studies on gold-metalized silicon wafers (Au//SiO2//Si) under ambient conditions. The amount of reduced vanadium centers in the "confined" environment increases substantially after beam irradiation with soft X-rays compared to non-irradiated samples. The excited state of one POM anion seems to give rise to subsequent electron transfer from another POM anion. However, this reaction is prohibited as soon as the relaxed T1 state of the POM is reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.