Abstract

Because of their considerable science and technical interest, nanodiamonds (3-5 nm) are often used as a model to study the phase transformation between graphite and diamond. Here we demonstrated that a reversible nanodiamond-carbon onion phase transformation can become true when laser irradiates colloidal suspensions of nanodiamonds at the ambient temperature and pressure. Nanodiamonds are first transformed to carbon onions driven by the laser-induced high temperature in which an intermediary bucky diamond phase is observed. Sequentially, carbon onions are transformed back to nanodiamonds driven by the laser-induced high temperature and high pressure from carbon onions as nanoscaled temperature and pressure cell upon the laser irradiation process in liquid. Similarly, the same bucky diamond phase serving as an intermediate phase is found during the carbon onion-to-nanodiamond transition. To have a clear insight into the unique phase transformation the thermodynamic approaches on the nanoscale were proposed to elucidate the reversible phase transformation of nanodiamond-to-carbon onion-to-nanodiamond via an intermediary bucky diamond phase upon the laser irradiation in liquid. This reversible transition reveals a series of phase transformations between diamond and carbon allotropes, such as carbon onion and bucky diamond, having a general insight into the basic physics involved in these phase transformations. These results give a clue to the root of meteoritic nanodiamonds that are commonly found in primitive meteorites but their origin is puzzling and offers one suitable approach for breaking controllable pathways between diamond and carbon allotropes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call