Abstract

There are limited reports about the transformation of pure organic room-temperature phosphorescence (RTP) materials with multilevel stimuli-responsiveness at different RTP emission wavelengths under external stimuli. It is difficult to ensure efficient intersystem crossing (ISC) in different states of a single-component system. This research reports the conversion of the organic single-component small molecule 1,2-bis(4-alkoxyphenyl)ethane-1,2-dione (N-BOX) with multilevel stimuli-responsiveness between high-efficiency blue and yellow RTP by grinding or thermal annealing N-BOX crystals. The RTP emission of N-BOX in the crystalline state was easy to adjust by external stimuli (grinding or thermal annealing) due to its non-compact packing, which led to a phase transition and generated unique multilevel stimuli-responsiveness. In particular, the RTP quantum yield of 7-BOX with multilevel stimuli-responsiveness reached 68.4 %, which provides an opportunity for regulation of smart optical materials based on pure organic RTP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call