Abstract

AbstractResistance random access memory (RRAM) has attracted intense attention in recent years for the potential application as nonvolatile memory. One of the tempting properties of RRAM is the multi-level memory, in which several resistance states can be obtained and each of them can be used to save information. In this paper, the electric-pulse-induced multi-level resistance switching of the Ag-La0.7Ca03MnO3-Pt heterostructures was studied. The multi-level resistance switching (MLRS) was observed in the switching from high to low resistance state (HRS→LRS) by applying electric pulse with various pulse voltages. The threshold pulse voltages of MLRS are related to the initial resistance values as well as the switching directions. On the other hand, the resistance switching behavior from low to high resistance states (LRS→HRS) shows unobvious MLRS. MLRS was explained by the parallel effect of multi-filament forming/rupture in the Ag/La0.7Ca0.3MnO3 interface layer. The present results suggest a possible application of Ag-La0.7Ca03MnO3-Pt heterostructures as multi-level memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.