Abstract
AbstractThe spiral is a fundamental structure in nature and spiral structures with controllable handedness are of increasing interest in the design of new chiroptical materials. In this study, micrometer‐scale spiral structures with reversible chirality were fabricated based on the assembly of a liquid crystalline block copolymer film assisted by enantiopure tartaric acid. Mechanistic insight revealed that the formation of the spiral structures was closely related to the liquid crystalline properties of the major phase of block copolymer under the action of chiral tartaric acid. The chiral spiral structures with controllable handedness were easily erased under ultraviolet light irradiation and restored via thermal annealing. This facile thermal treatment method provides guidance for fabrication of chiral micrometer‐scale spiral structures with adjustable chiral properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.