Abstract

Smart fluorescent materials that respond to external stimuli have received more and more attention because of their excellent optical properties in the field of anti-counterfeiting, information security and fluorescence sensing. Herein, we reported a new stimulus-responsive material, {[Zn4(TCPE)(HTCPE)(DMA)3(OH)(H2O)2]·2DMA·2H2O}n (HPU-21), which showed a series of fluorescence changes under the influence of temperature, pressure and solvents. Combined with the temperature-dependent fluorescence, 1H NMR and 13C NMR spectra, TEM and powder X-ray diffraction results, the fluorescence transformation was mainly attributed to the changes in the twisted ethyl core and the multiple rotational phenyl rings, as well as the aggregation degree. Based on these findings, we designed an adjustable formaldehyde probe with excellent performance. The detection limit of formaldehyde in aqueous solutions is calculated as 35 ppb, which is much lower than the concentration that is harmful to health (20 ppm). The extremely high sensitivity to formaldehyde makes it have potential application prospects in practical formaldehyde detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.