Abstract

Magnetic and mechanical behaviors are strongly coupled. But few models are able to describe magneto-mechanical coupling effects. We propose a multiscale approach for the modeling of the reversible magneto-elastic behavior of ferromagnetic materials. This approach stands between macroscopic phenomenological modeling and micromagnetic simulations. We detail first the definition of the magneto-elastic behavior of a single crystal, deduced from energetic considerations made at the scale of magnetic domains and hypotheses concerning the domains microstructure. This model is then applied to the description of the behavior of polycrystalline media, through a multiscale approach. The heterogeneity of stress and magnetic field is taken into account through a self-consistent localization–homogenization scheme, including crystallographic texture data. Results are discussed and compared to experimental data from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call