Abstract

Reversible luminescence photoswitching upon photochromic reactions with excellent reproducibility is achieved in a new inorganic luminescence material: Na(0.5)Bi(2.5)Nb2O9: Pr(3+) (NBN:Pr) ferroelectric oxides. Upon blue light (452 nm) or sunlight irradiation, the material exhibits a reversible photochromism (PC) performance between dark gray and green color by alternating visible light and thermal stimulus without inducing any structure changes and is accompanied by a red emission at 613 nm. The coloration and decoloration process can be quantitatively evaluated by in situ photoluminescence spectroscopy. Meanwhile, the luminescence emission intensity based on PC reactions is effectively tuned by changing irradiation time and excitation wavelength, and the degree of luminescence modulation has no significant degradation after several periods, showing very excellent reproducibility. On the basis of the luminescence modulation behavior, a double-exponential relaxation model is proposed, and a combined equation is adopted to well describe the luminescence response to light irradiation, being in agreement with the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call