Abstract

A new strategy to achieve easily scalable triple stimuli-responsive elastomeric opal films for applications as stretch-tunable photonic band gap materials is reported. Novel monodisperse highly functional core-interlayer-shell beads are obtained by semicontinuous emulsion polymerization featuring a temperature-sensitive fluorescent rhodamine dye either locally restricted in the core or the shell of prepared beads. After extrusion and compression molding, homogeneous elastomeric opal films with fascinating stretch-tunable and temperature-dependent fluorescent properties can be obtained. Applying strains of only a few percent lead to significant blue shift of the reflected colors making these films excellent candidates for applications as deformation sensors. Higher strains up to 90% lead to a tremendous Bragg reflection color change caused by transition from the (111) to the (200) lattice plane. The well-ordered opaline structure with its stop band at the emission frequency of the incorporated fluorescent ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.