Abstract
AbstractThe difficulties to identify the rate‐limiting step cause the lithium (Li) plating hard to be completely avoided on graphite anodes during fast charging. Therefore, Li plating regulation and morphology control are proposed to address this issue. Specifically, a Li plating‐reversible graphite anode is achieved via a localized high‐concentration electrolyte (LHCE) to successfully regulate the Li plating with high reversibility over high‐rate cycling. The evolution of solid electrolyte interphase (SEI) before and after Li plating is deeply investigated to explore the interaction between the lithiation behavior and electrochemical interface polarization. Under the fact that Li plating contributes 40 % of total lithiation capacity, the stable LiF‐rich SEI renders the anode a higher average Coulombic efficiency (99.9 %) throughout 240 cycles and a 99.95 % reversibility of Li plating. Consequently, a self‐made 1.2‐Ah LiNi0.5Mn0.3Co0.2O2 | graphite pouch cell delivers a competitive retention of 84.4 % even at 7.2 A (6 C) after 150 cycles. This work creates an ingenious bridge between the graphite anode and Li plating, for realizing the high‐performance fast‐charging batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.