Abstract

Reversible structural changes of As-rich As–Se nanolayers occurring during in situ thermal annealing and above-bandgap laser illumination were studied by synchrotron radiation photoelectron spectroscopy. It was found that the first thermal annealing of As56Se44 nanolayers led to a decrease of the concentration of As that can be connected with evaporation of more volatile As-rich fractions from the surface. This process is accompanied by structural rearrangements in the nanolayers. In situ green laser illumination of annealed samples causes an increase in the concentration of homopolar As–As bonds associated with As-Se2As s.u., while the opposite effect was detected during further thermal treatment. These processes appeared to be reversible for three sequences of annealing and illumination. The observed effect of the reversible photoinduced structural modification is discussed in detail, and possible applications as an active optical medium for photonics are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.