Abstract

The self-assembled cage ROT-1 was prepared from the pyridine-terminated rotator 1, the phenanthroline-appended stator 2, DABCO, and copper(I) ions in a ratio of 1:1:1:4. This four-component assembly is held together by two pyridine→[Cu(phenAr2)]+ as well as two DABCO→zinc porphyrin interactions (phenAr2 = 2,9-diarylphenanthroline) and does not show any motion on the NMR time scale ( k < 0.1 s-1, 298 K). However, it is converted to the fast nanorotor ROT-1 xCD3CN by addition of CD3CN [ x = (v/v)% of acetonitrile in dichloromethane] due to acceleration of both pyridine→copper(I) dissociation steps. Now the rotator is able to visit all four copper(I)-loaded phenanthroline stations of the stator. Depending on the amount of CD3CN, the exchange frequency of the nanorotor varies from 0.7 s-1 (CD3CN:CD2Cl2 = 1:29) to 8000 s-1 (CD3CN:CD2Cl2 = 1:5) at 25 °C. When iodide (I-) is added to the static assembly ROT-1, the rotational speed increases even more drastically ( k = 20 000 s-1), again due to accelerating the rate-determining pyridine→copper(I) dissociation step. In both cases, a sigmoidal relationship is established between exchange frequency and the concentration of added nucleophile (CD3CN or iodide) that suggests the presence of a cooperative effect. Reversible switching between the static assembly and fast rotor was performed several times without any decomposition of the system. In contrast, addition of the common nucleophile PPh3 to ROT-1 does not increase the rotational speed, a finding that is explained on thermodynamic grounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.