Abstract

A [2.2.1] aluminium metallobicycle is capable of reversibly inserting CO to form a [2.2.2] metallobicycle at 100 °C. Computational studies reveal a highly asynchronous, but concerted, transition state for CO insertion. The coordination of CO to aluminium precedes C-C bond formation. The reversible migratory insertion of CO at aluminium thus mimics well-established transition-metal reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.