Abstract

Copper/zinc superoxide dismutase (CuZn-SOD) is a key enzyme in the metabolism of oxygen free radicals. The gene encoding CuZn-SOD resides on human chromosome 21 and is overexpressed in Down syndrome (DS) patients. Overexpression of CuZn-SOD in transgenic (Tg) mice and cultured cells creates chronic oxidative stress leading to enhanced susceptibility to degeneration and apoptotic cell death. We have now found that three lines of Tg-CuZn-SOD mice, one of which also overexpresses S100beta, a glial calcium binding protein, are deficient in spatial memory. Furthermore, hippocampal slices taken from these mice have an apparently normal synaptic physiology, but are impaired in the ability to express long-term potentiation (LTP). This effect on hippocampal LTP was abrogated by treatment of slices with the H2O2 scavenger catalase or the antioxidant N-t-butyl-phenylnitrone (BPN). It is proposed that elevated CuZnSOD causes an increase in tetanic stimulation-evoked formation of H2O2 which leads to diminished LTP and cognitive deficits in these mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.