Abstract

Several modern technologies for energy storage and conversion are based on the screening of electric charge on the surface of porous electrodes by ions in an adjacent electrolyte. This so-called electric double layer (EDL) exhibits an intricate interplay with the electrolyte's temperature that was the focus of several recent studies. In one of them, Janssen et al. [Phys. Rev. Lett. 119, 166002 (2017)] experimentally determined the ratio Qrev/Wel of reversible heat flowing into a supercapacitor during an isothermal charging process and the electric work applied therein. To rationalize that data, here, we determine Qrev/Wel within different models of the EDL using theoretical approaches such as density functional theory (DFT) as well as molecular dynamics simulations. Applying mainly the restricted primitive model, we find quantitative support for a speculation of Janssen et al. that steric ion interactions are key to the ratio Qrev/Wel. Here, we identified the entropic contribution of certain DFT functionals, which grants direct access to the reversible heat. We further demonstrate how Qrev/Wel changes when calculated in different thermodynamic ensembles and processes. We show that the experiments of Janssen et al. are explained best by a charging process at fixed bulk density or in a "semi-canonical" system. Finally, we find that Qrev/Wel significantly depends on parameters such as pore and ion size, salt concentration, and valencies of the cations and anions of the electrolyte. Our findings can guide further heat production measurements and can be applied in studies on, for instance, nervous conduction, where reversible heat is a key element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.