Abstract

Controlling the guest expulsion process from a receptor is of critical importance in various fields. Several coordination cages have been recently designed for this purpose, based on various types of stimuli to induce the guest release. Herein, we report the first example of a redox-triggered process from a coordination cage. The latter integrates a cavity, the panels of which are based on the extended tetrathiafulvalene unit (exTTF). The unique combination of electronic and conformational features of this framework (i.e. high π-donating properties and drastic conformational changes upon oxidation) allows the reversible disassembly/reassembly of the redox-active cavity upon chemical oxidation/reduction, respectively. This cage is able to bind the three-dimensional B12 F12 (2-) anion in a 1:2 host/guest stoichiometry. The reversible redox-triggered disassembly of the cage could also be demonstrated in the case of the host-guest complex, offering a new option for guest-delivering control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.