Abstract
AbstractCrystalline metal halide perovskites (MHPs) have ushered in remarkable advancements across diverse fields, including materials, electronics, and photonics. While the advantages of crystallinity are well‐established, the ability to transition to a glassy state with unique properties presents unprecedented opportunities to expand the structure‐property relationship and broaden the application scope for 2D MHPs. Up until now, the exploration of amorphous analogs for MHPs is confined to high‐pressure conditions, limiting in‐depth studies and practical applications. In this context, a new type of 2D MHPs is synthesized by incorporating halogen substituted organic cations, resulting in a remarkable combination of low melting temperature and inhibited crystallization. This new type of 2D MHPs can be effectively melt‐quenched into a glassy state except for (DMIEA)3Pb2I7 (DMIEA = N, N‐dimethyl iodoethylammonium) counterpart. Analysis of the crystallization activation energy for (DMIPA)4Pb3I10 (DMIPA = N, N‐dimethyl iodopropylammonium) reveals a low crystallization activation energy of 60.7 ± 4.0 kJ mol−1, which indicates a fast glass‐crystal transition. The type of atypical 2D MHP showcases facile and reversible switching between glassy and crystalline states and opens up novel possibilities for applications, such as nonvolatile memory, optical communication, and neuromorphic computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.