Abstract

In photoreceptors, a latency of many milliseconds elapses between the absorption of a light quantum and the occurrence of the late receptor potential, even for strong light stimuli. Surprisingly, this is much longer than the time necessary for conductance changes such as occur in membranes of neurones or muscles, mediated by chemical transmitters. There are several possible explanations for the long photoreceptor latency. (1) It may be due to properties of the visual pigment molecules. For instance, the temporal coincidence of the occurrence of metarhodospin II with the receptor signal indicates that the meta I-meta II transition might be the trigger for the electrical response in vertebrate photoreception. (2) It may be explained by properties of transport processes. Such a time consuming process could be the diffusion of an internal 'transmitter substance', which diffuses to a 'pore' in the receptor membrane. (3) A third possibility is the time needed to produce and accumulate chemical substances. The light-induced change of the visual pigment molecule might trigger a chemical reaction chain, in which the product of an earlier step triggers the next one. The experiments described here show that a considerable part of the long latency in photoreception is due to processes that are localised at the level of the visual pigment molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.