Abstract

A hallmark of anoxia tolerance in western painted turtles is relative constancy of tissue adenylate concentrations during periods of oxygen limitation. During anoxia heart and brain intracellular compartments become more acidic and cellular energy demands are met by anaerobic glycolysis. Because changes in adenylates and pH during anoxic stress could represent important signals triggering metabolic and ion channel down-regulation we measured PCr, ATP and intracellular pH in turtle brain sheets throughout a 3-h anoxic-re-oxygenation transition with 31P NMR. Within 30 min of anoxia, PCr levels decrease 40% and remain at this level during anoxia. A different profile is observed for ATP, with a statistically significant decrease of 23% occurring gradually during 110 min of anoxic perfusion. Intracellular pH decreases significantly with the onset of anoxia, from 7.2 to 6.6 within 50 min. Upon re-oxygenation PCr, ATP and intracellular pH recover to pre-anoxic levels within 60 min. This is the first demonstration of a sustained reversible decrease in ATP levels with anoxia in turtle brain. The observed changes in pH and adenylates, and a probable concomitant increase in adenosine, may represent important metabolic signals during anoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.