Abstract

Reversible-deactivation radical polymerization (RDRP) in the presence of Cu0 is a versatile technique that can be used to create well-controlled polymers with complex architectures. Despite the facile nature of the technique, there has been a vigorous debate in the literature as to the mechanism of the reaction. One proposed mechanism, named supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP), has CuI as the major activator of alkyl halides, Cu0 acting as a supplemental activator, an inner-sphere electron transfer occurring during the activation step, and relatively slow comproportionation and disproportionation. In SARA ATRP slow activation of alkyl halides by Cu0 and comproportionation of CuII with Cu0 compensates for the small number of radicals lost to termination reactions. Alternatively, a mechanism named single electron transfer living radical polymerization (SET-LRP) assumes that the CuI species do not activate alkyl halides, but undergo instantaneous disprop...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call