Abstract

α-Synuclein (α-syn) aggregation is a key event in Parkinson's disease (PD). Mutations in glycosphingolipid (GSL)-degrading glucocerebrosidase are risk factors for PD, indicating that disrupted GSL clearance plays a key role in α-syn aggregation. However, the mechanisms of GSL-induced aggregation are not completely understood. We document the presence of physiological α-syn conformers in human midbrain dopamine neurons and tested their contribution to the aggregation process. Pathological α-syn assembly mainly occurred through the conversion of high molecular weight (HMW) physiological α-syn conformers into compact, assembly-state intermediates by glucosylceramide (GluCer), without apparent disassembly into free monomers. This process was reversible invitro through GluCer depletion. Reducing GSLs in PD patient neurons with and without GBA1 mutations diminished pathology and restored physiological α-syn conformers that associated with synapses. Our work indicates that GSLs control the toxic conversion of physiological α-syn conformers in a reversible manner that isamenable to therapeutic intervention by GSL reducing agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.