Abstract

Chemical reaction networks (CRNs) and DNA strand displacement systems have shown potential for implementing logically and physically reversible computation. It has been shown that CRNs on a surface allow highly scalable and parallelizable computation. In this paper, we demonstrate that simple rearrangement reactions on a surface, which we refer to as swaps, are capable of physically reversible Boolean computation. We present designs for elementary logic gates, a method for constructing arbitrary feedforward digital circuits, and a proof of their correctness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.