Abstract
Development of light-driven functional materials capable of displaying reversible properties is currently a vibrant frontier from both scientific and technological points of view. Here a new visible-light-driven chiral molecular switch is synthesized and characterized. To the best of our knowledge, this is the first example of a chiral molecular switch in which the visible-light-driven azobenzene motif is directly linked to an axially chiral scaffold through a C-C bond. The chiral molecular switch exhibits trans-to- cis photoisomerization upon 530 nm irradiation and cis-to- trans isomerization upon 450 nm irradiation. The switch can thus be photoisomerized in both directions using visible light of different wavelengths, a promising attribute for device applications. It was found that this relatively rigid molecular switch exhibited a high helical twisting power (HTP) in liquid crystal hosts and a large change of HTP value upon photoisomerization. We achieved dynamic reflection tuning across the visible spectrum through incorporation into a self-organized helical superstructure, i.e., a cholesteric liquid crystal. We also demonstrated patterned photodisplays reflecting red, green, and blue circularly polarized light using these cholesteric films. Phototunable color displays were fabricated by selective light irradiation where the information can be reversibly hidden by applying an electric field and restored by applying either a mechanical force or an electric field of higher voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.