Abstract

The exploration of pyridine-imine (PI) iron complexes that exhibit redox noninnocence (RNI) led to several interesting discoveries. The reduction of (PI)FeX2 species afforded disproportionation products such as (dmpPI)2FeX (dmp = 2,6-Me2-C6H3, X = Cl, Br; 8-X) and (dippPI)2FeX (dipp = 2,6-iPr2-C6H3, X = Cl, Br; 9-X), which were independently prepared by reductions of (PI)FeX2 in the presence of PI. The crystal structure of 8-Br possessed an asymmetric unit with two distinct electromers, species with different electronic GSs: a low-spin (S = 1/2) configuration derived from an intermediate-spin S = 1 core antiferromagnetically (AF) coupled to an S = 1/2 PI ligand, and an S = 3/2 center resulting from a high-spin S = 2 core AF-coupled to an S = 1/2 PI ligand. Calculations were used to energetically compare plausible ground states. Polydentate diazepane-PI (DHPI) ligands were applied to the synthesis of monomeric dihalides (DHPI)FeX2 (X = Cl, 1-Cl2; X = Br, 1-Br2); reduction generated the highly distorted bioctahedral dimers (DHPA)2Fe2X2 ((3-X)2) containing a C-C bond formed from imine coupling; the monomers 1-X2 could be regenerated upon Ph3CX oxidation. Dihalides and their reduced counterparts were subjected to various alkyl halides and methyl methacrylate (MMA), generating polymers with little to no molecular weight control, indicative of simple radical-initiated polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.