Abstract

The blood-brain barrier (BBB) tightly controls entry of molecules and cells into the brain, restricting the delivery of therapeutics. Blood-brain barrier opening (BBBO) utilizes reversible disruption of cell-cell junctions between brain microvascular endothelial cells to enable transient entry into the brain. Here, we demonstrate that melittin, a membrane active peptide present in bee venom, supports transient BBBO. From endothelial and neuronal viability studies, we first identify the accessible concentration range for BBBO. We then use a tissue-engineered model of the human BBB to optimize dosing and elucidate the mechanism of opening. Melittin and other membrane active variants transiently increase paracellular permeability via disruption of cell-cell junctions that result in transient focal leaks. To validate the results from the tissue-engineered model, we then demonstrate that transient BBBO can be reproduced in a mouse model. We identify a minimum clinically effective intra-arterial dose of 3 μM min melittin, which is reversible within one day and neurologically safe. Melittin-induced BBBO represents a novel technology for delivery of therapeutics into the brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call