Abstract

Because localized surface plasmon resonance in nanostructures of noble metals is accompanied by interesting physical effects such as optical near-field enhancement, heat release, and the generation of hot electrons, it has been employed in a wide range of applications, including plasmon-assisted chemical reactions. Here, we use a composite of silver nanoparticles and graphene oxide (Ag@GO) as the catalytic as well as the analytic platform for plasmon-assisted chemical reactions. Through time-dependent surface-enhanced Raman scattering experiments, it is found that p-nitrothiophenol (pNTP) molecules on Ag@GO can be associated with nitro compounds such as nitrobenzene and 1-nitropropane to form azo compounds when aided by the plasmons. Furthermore, the reaction rate can be modulated by varying the wavelength and power of the excitation laser as well as the nitro compounds used. In addition, the aforementioned coupling reaction can be reversed. We demonstrate that the oxidation of azo compounds on Ag@GO using KMnO4 leads to the dissociation of the N═N double bond in the azo compounds and that the rate of bond dissociation can be accelerated significantly via laser irradiation. Furthermore, the pNTP molecules on Ag@GO can be recovered after the oxidation reaction. Finally, we demonstrate that the plasmon-assisted coupling reaction allows for the immobilization of nitro-group-containing fluorophores at specific locations on Ag@GO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.