Abstract

<h2>Summary</h2> The combination of anionic and cationic activities within Li-rich materials breaks through the traditional capacity limitation and achieves high-energy-density batteries. However, the utilization of anionic oxygen redox reactions always leads to detrimental lattice oxygen release, which accelerates structural distortion and electrochemical performance deterioration. In contrast to the typical Li–O–Li configuration in Li-rich layered oxides, not only can oxygen redox behaviors be triggered within layered Li<sub>4/7</sub>[□<sub>1/7</sub>Mn<sub>6/7</sub>]O<sub>2</sub> (□: Mn vacancy) with Li–O-vacancy configuration, but lattice oxygen loss can be effectively suppressed. Upon Li<sup>+</sup> (de)intercalations, Mn vacancy within the TM layer also enables reversible structural evolution and Li migration processes, further boosting high output capacity and long-term cycling stability. Besides, not only can the irreversible/reversible anionic/cationic redox reactions be clearly unraveled, but their capacity distributions can be roughly quantified upon cycling. Overall, our findings demonstrate that the introduction of Mn vacancy provides a promising configuration to achieve high-capacity cathode candidates for next-generation Li-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.