Abstract

Previous work has shown that photoisomerization of dopant molecules in a polystyrene film can either enhance or suppress its adhesion to a polar glass surface (Mostafavi, S. H. Macromolecules 2018, 51, 2388−2394; Mostafavi, S. H. Macromolecules 2019, 52, 6311–6317). In this paper, a different polymer host, Zeonex (ZX), is used in conjunction with the photochrome spiropyran. Nonpolar ZX has a higher glass transition temperature that makes it resistant to nanoscale mechanical deformations, while the spiropyran (SP) → merocyanine (MC) photoisomerization is a reversible reaction with a large polarity change. Ultraviolet light isomerizes SP to the polar MC form, increasing both the shear and pull-off adhesion forces to a clean glass surface by a factor of 5. Visible irradiation switches it back to the nonpolar SP form and returns the film back to its original weak adhesion, in contrast to the previously studied polystyrene films. The ability of visible light to switch off the polymer–glass adhesion is harnessed to make a light-controlled payload release device as well as to accelerate the polymer film delamination rate in water by a factor of 100. The kinetics of the water delamination, as well as the origin of residual adhesion after switching back to the SP form, are investigated. This work demonstrates how light-controlled noncovalent adhesion can be used as a solvent-free method to remove protective coatings or to disassemble structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.