Abstract

In this work, we report the first molecular weight-controlled amphiphilic polybetaine synthesis using various hydrocarbons via reversible addition?fragmentation chain-transfer (RAFT) polymerization. The experimental separation of the alkyl aminocrotonate tautomers, which has been the subject of debate, was completed for the first time. The enamine form of these tautomers was further used as a monomer for the RAFT polymerization of amphiphilic polycarboxybetaines. Self-assembly of the amphiphilic polycarboxybetaines showed micelle structures from spherical, rod-like to fractal in the aqueous media due to the competition between both electrostatic and hydrophobic forces. Hydrophobically dominant interactions among amphiphilic polycarboxybetaines and long-chain hydrocarbon alkane molecules were investigated to understand long-chain hydrocarbon alkane crystallization using alkane crystal deposition and viscosity experiments. Strong hydrophobic forces between poly(hexadecyl-grafted aminocrotonate?methacrylic acid) and long-chain hydrocarbon alkane molecules changed the surface properties of the long-chain hydrocarbon alkane nucleus and inhibited the growth of paraffin crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.