Abstract

AbstractThe γ‐initiated reversible addition–fragmentation chain‐transfer (RAFT)‐agent‐mediated free‐radical graft polymerization of styrene onto a polypropylene solid phase has been performed with cumyl phenyldithioacetate (CPDA). The initial CPDA concentrations range between 1 × 10−2 and 2 × 10−3 mol L−1 with dose rates of 0.18, 0.08, 0.07, 0.05, and 0.03 kGy h−1. The RAFT graft polymerization is compared with the conventional free‐radical graft polymerization of styrene onto polypropylene. Both processes show two distinct regimes of grafting: (1) the grafting layer regime, in which the surface is not yet totally covered with polymer chains, and (2) a regime in which a second polymer layer is formed. Here, we hypothesize that the surface is totally covered with polymer chains and that new polymer chains are started by polystyrene radicals from already grafted chains. The grafting ratio of the RAFT‐agent‐mediated process is controlled via the initial CPDA concentration. The molecular weight of the polystyrene from the solution (PSfree) shows a linear behavior with conversion and has a low polydispersity index. Furthermore, the loading of the grafted solid phase shows a linear relationship with the molecular weight of PSfree for both regimes. Regime 2 has a higher loading capacity per molecular weight than regime 1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4180–4192, 2002

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.