Abstract

The effects of aging on the pH-dependence and reversibility of uranium and thorium binding by a modified bauxite refinery residue (MBRR) were studied in laboratory uptake/leaching experiments. Natural uranium and thorium isotopes (predominantly 238UVI and 232ThIV) of 0.4, and 0.2mM were loaded for an 8-day period at the natural equilibrium pH of the MBRR (approximately 8.5) and were allowed to age for 6months in humid sealed containers at 4, 23, and 65°C. After aging, anthropogenic 232UVI and 229ThIV were added as exchange isotopes and the pH decreased stepwise from 8 to 3 over several hours in pH dependent experiments. The relative concentrations of the isotope pairs (i.e. 238UVI and 232UVI; 232ThIV and 229ThIV) indicated that irreversibility of UVI and ThIV binding by the MBRR increased with aging and was dependent on the aging temperature and surface actinide loading. Linear combination fitting of the EXAFS data for the uranium loaded materials indicated that at low uranium concentrations sorption to minerals (particularly hematite) was a prime uranium removal mechanism, but at higher concentrations precipitation dominated. The data suggest that increased irreversibility and incorporation of UVI during aging is associated with re-crystallisation of precipitates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.