Abstract
Among the most fundamental questions in the manipulation of quantum resources such as entanglement is the possibility of reversibly transforming all resource states. The key consequence of this would be the identification of a unique entropic resource measure that exactly quantifies the limits of achievable transformation rates. Remarkably, previous results claimed that such asymptotic reversibility holds true in very general settings; however, recently those findings have been found to be incomplete, casting doubt on the conjecture. Here we show that it is indeed possible to reversibly interconvert all states in general quantum resource theories, as long as one allows protocols that may only succeed probabilistically. Although such transformations have some chance of failure, we show that their success probability can be ensured to be bounded away from zero, even in the asymptotic limit of infinitely many manipulated copies. As in previously conjectured approaches, the achievability here is realised through operations that are asymptotically resource non-generating, and we show that this choice is optimal: smaller sets of transformations cannot lead to reversibility. Our methods are based on connecting the transformation rates under probabilistic protocols with strong converse rates for deterministic transformations, which we strengthen into an exact equivalence in the case of entanglement distillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.