Abstract

Whereas decreased concentrations of surfactant protein (SP)-B are associated with lung injury and respiratory distress, potential causal relationships between SP-B deficiency and lung inflammation remain unclear. A transgenic mouse in which human SP-B expression was placed under conditional control of doxycycline via the CCSP promoter was utilized to determine the role of SP-B in the initiation of pulmonary inflammation. Adult mice, made SP-B deficient by removal of doxycycline, developed severe respiratory failure within 4 days. Deficiency of SP-B was associated with increased minimal surface tension of the surfactant and perturbed lung mechanics. Four days of SP-B deficiency did not alter SP-C content or surfactant phospholipid content or composition. SP-B deficiency was associated with lung inflammation and increased soluble L-selectin, STAT-3, and phosphorylated STAT-3 in alveolar macrophages and alveolar epithelial cells. Alveolar IL-6, IL-1beta, and macrophage inflammatory protein-2 concentrations were increased after removal of doxycycline, indicating pulmonary inflammation. Restoration of SP-B expression following administration of doxycycline rapidly reversed SP-B-dependent abnormalities in lung mechanics and inflammation. SP-B deficiency is sufficient to cause lung dysfunction and inflammation in adult mice. SP-B reversed inflammation and maintained lung function in vivo, indicating its potential utility for the prevention and treatment of pulmonary injury and surfactant deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call