Abstract

Time-resolved chemically induced dynamic nuclear polarization (CIDNP) has been used to study electron transfer reactions in tryptophan-tyrosine peptide under strongly acidic conditions. It is demonstrated that a decrease in pH from 2.4 to 1.6 reduces the overall efficiency of intramolecular electron transfer from the tyrosine residue to the oxidized tryptophan residue. A detailed analysis of the CIDNP kinetics revealed that the rate constant of this reaction k(f) stays unchanged upon pH variation, whereas the rate constant of electron transfer in the opposite direction k(r) increases with decreasing pH. The values of the rate constants extracted from model simulations are as follows: k(f) = (5.5 +/- 0.5) x 10(5) s(-1); k(r) = (5.5 +/- 1.0) x 10(4) s(-1) at pH 2.4, (1.2 +/- 0.2) x 10(5) s(-1) at pH 2.0, and (3.2 +/- 0.4) x 10(5) s(-1) at pH 1.6. The pH dependence of log K = log(k(f)/k(r)) is linear and allows for the determination of the difference between the one-electron reduction potentials of the tryptophanyl and tyrosyl radicals in the peptide. The efficiency of IET in acidic aqueous solution containing 10 M urea-d(4) was estimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call