Abstract

It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.

Highlights

  • It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation

  • Yang and co-workers demonstrated the nm-thick molecular sieving membranes composed of exfoliated zeolitic imidazolate framework (ZIF) nanosheets exhibiting a tenfold increase in gas permeation flux compared to graphene oxide (GO) membranes[6,14]

  • We have prepared nm-thick 2D membranes composed of exfoliated metal-organic frameworks (MOFs) nanosheets demonstrating reversed thermoswitchable molecular sieving gas separation performance

Read more

Summary

Introduction

It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Previous studies on ultrathin two-dimensional (2D) membranes are primarily focused on 2D inorganic nanosheets as building blocks, such as exfoliated zeolites[1,2,3], graphene[3,4,5], or graphene oxide (GO) (refs 5–9). Given the special configuration of gas pathways and the small aperture size of PW1, it is anticipated that the 2D membranes obtained by aligning the exfoliated MAMS-1 nanosheets along the [001] direction should be able to separate gases via molecule sieving mechanism. The hydrophilic inner wall of PW2 will impose different affinity towards various gas molecules (for example, CO2 versus H2) leading to improved separation performance[35,36]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.