Abstract

The stability of Mg-Fe-Al biotite has been investigated with reversed phase-equilibrium experiments on four equilibria. Experimental brackets in pure H2O and H2O-CO2 mixtures for the equilibrium: \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \[phlogopite 3 quartz enstatite sanidine H_{2}O\] \end{document}(1) are in good agreement with previous experiments in mixed-volatile fluids (Bohlen et al. 1983) and H2O-KCl solutions (Aranovich and Newton 1998), while indicating a reduced stability field for compared to previous data in pure H2O (Wood 1976; Peterson and Newton 1989). Aluminum solubility in biotite has been determined in the Fe-, Mg-, and Fe-Mg systems from reversed phase-equilibrium data for the equilibria: \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \[3 eastonite 6 quartz 2 phlogopite 3 sillimanite sanidine H_{2}O\] \end{document}(2) \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \[3 siderophyllite 6 quartz 2 annite 3 sillimanite sanidine H_{2}O\] \end{document}(3) over the P-T range ~600–750 °C and 1.1–3.4 kbar. Over the investigated temperatures, the brackets define nominal Al saturation levels of 1.60 ± 0.04 in Mg-biotite, 2.08 ± 0.05 in Fe-biotite, and 1.81 ± 0.03 in biotite with Fe/(Fe + Mg) = 0.43–0.44. The slight decrease in Al with increasing T and decreasing P suggested by the data is less than experimental uncertainties. Compared to biotite on the Phl–Ann join, Al-saturated biotites have a markedly larger stability field, particularly in the Fe-system. This effect has been quantified in the Fe-system with one reversal between 691–709 °C at 2.4 kbar for the equilibrium: \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \[biotite sillimanite quartz almandine sanidine H_{2}O\] \end{document}(4) The combined experimental results place tight constraints on the thermodynamic properties of phlogopite, annite, eastonite, and siderophyllite. The resulting nonzero (Δ H 298 = −9.4 kJ/mol, with Δ S = Δ V = 0) energetics for the internal equilibrium: \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \[Eastonite 2/3 Annite 2/3 Phlogopite Siderophyllite\] \end{document}(5) reflect strong Fe-Al affinity in biotite, which has a marked effect on thermobarometers involving biotite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.