Abstract

BackgroundMetabolism in tumor shifts from oxidative phosphorylation to inefficient glycolysis resulting in overproduction of lactate (Warburg effect), and cancers may be effectively treated if this imbalance were corrected. The aim of this longitudinal study of glioblastoma in a rat model was to determine whether the ratio of lactate (surrogate marker for glycolysis) to bicarbonate (for oxidative phosphorylation), as measured via in vivo magnetic resonance imaging of hyperpolarized 13C-labeled pyruvate accurately predicts survival.MethodsC6 Glioma implanted male Wistar rats (N = 26) were treated with an anti-vascular endothelial growth factor antibody B20.4.1.1 in a preliminary study to assess the efficacy of the drug. In a subsequent longitudinal survival study, magnetic resonance spectroscopic imaging (MRSI) was used to estimate [1-13C]Lactate and [1-13C]Bicarbonate in tumor and contralateral normal appearing brain of glioma implanted rats (N = 13) after injection of hyperpolarized [1-13C]Pyruvate at baseline and 48 hours post-treatment with B20.4.1.1.ResultsA survival of ~25% of B20.4.1.1 treated rats was noted in the preliminary study. In the longitudinal imaging experiment, changes in 13C Lactate, 13C Bicarbonate and tumor size measured at baseline and 48 hours post-treatment did not correlate with survival. 13C Lactate to 13C Bicarbonate ratio increased in all the 6 animals that succumbed to the tumor whereas the ratio decreased in 6 of the 7 animals that survived past the 70-day observation period.Conclusions13C Lactate to 13C Bicarbonate ratio (Lac/Bic) at 48 hours post-treatment is highly predictive of survival (p = 0.003). These results suggest a potential role for the 13C Lac/Bic ratio serving as a valuable measure of tumor metabolism and predicting therapeutic response.

Highlights

  • With an increased awareness that virtually every oncogene affects its actions via an effect on metabolism, there has been a resurgent interest in the Warburg effect [1]

  • Metabolism in tumor shifts from oxidative phosphorylation to inefficient glycolysis resulting in overproduction of lactate (Warburg effect), and cancers may be effectively treated if this imbalance were corrected

  • In the longitudinal imaging experiment, changes in 13C Lactate, 13C Bicarbonate and tumor size measured at baseline and 48 hours post-treatment did not correlate with survival. 13C Lactate to 13C Bicarbonate ratio increased in all the 6 animals that succumbed to the tumor whereas the ratio decreased in 6 of the 7 animals that survived past the 70-day observation period

Read more

Summary

Introduction

With an increased awareness that virtually every oncogene affects its actions via an effect on metabolism, there has been a resurgent interest in the Warburg effect (or as it has come to be known, metabolic reprogramming) [1] This metabolic change, generally defined as a preponderance of glycolytic relative to oxidative metabolism, has been found to be intimately linked to proliferation of cancer tissue [2,3]. We argue that the major impediment to advancing these therapies to clinic is not so much the availability of candidates, but the lack of a robust measure of efficacy [5] Because these rather non-toxic agents can be administered over a wide range of doses and intervals, what is most needed is a rapid reproducible way to define efficacy, so that rapid realtime adjustments can be made. The aim of this longitudinal study of glioblastoma in a rat model was to determine whether the ratio of lactate (surrogate marker for glycolysis) to bicarbonate (for oxidative phosphorylation), as measured via in vivo magnetic resonance imaging of hyperpolarized 13C-labeled pyruvate accurately predicts survival

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.