Abstract

The maize Ac/Ds transposable element (TE) transposes by a "cut and paste" mechanism. Previous studies in maize showed that when the TE ends are in reversed orientation with respect to each other, alternative transposition reactions can occur resulting in large scale genome rearrangements including deletions and inversions. To test whether similar genome rearrangements can also occur in other plants, we studied the efficacy of such alternative transposition-mediated genome rearrangements in Arabidopsis. Here we present our analysis of 33 independent chromosome rearrangements. Transposition at the reversed ends Ds element can cause deletions over 1 Mbp, and inversions up to 2.4 Mbp in size. We identified additional rearrangements including a reciprocal translocation and a putative ring chromosome. Some of the deletions and inversions are germinally transmitted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.