Abstract

We investigated whether reverse transcriptase (RT) inhibitors (RTI) can be combined to inhibit human immunodeficiency virus type 1 (HIV-1) infection of colorectal tissue ex vivo as part of a strategy to develop an effective rectal microbicide. The nucleotide RTI (NRTI) PMPA (tenofovir) and two nonnucleoside RTI (NNRTI), UC-781 and TMC120 (dapivirine), were evaluated. Each compound inhibited the replication of the HIV isolates tested in TZM-bl cells, peripheral blood mononuclear cells, and colorectal explants. Dual combinations of the three compounds, either NRTI-NNRTI or NNRTI-NNRTI combinations, were more active than any of the individual compounds in both cellular and tissue models. Combinations were key to inhibiting infection by NRTI- and NNRTI-resistant isolates in all models tested. Moreover, we found that the replication capacities of HIV-1 isolates in colorectal explants were affected by single point mutations in RT that confer resistance to RTI. These data demonstrate that colorectal explants can be used to screen compounds for potential efficacy as part of a combination microbicide and to determine the mucosal fitness of RTI-resistant isolates. These findings may have important implications for the rational design of effective rectal microbicides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.