Abstract
Partial shading in thin film solar panels can result in reverse bias stress across shaded cells. Therefore, it is important to understand the effect of such reverse stress in commercially competitive PV technologies such as CIGS. In this paper, we systematically investigate the effect of moderate reverse bias on solution-processed CIGS solar cells. We subject the solar cells to varying degrees of reverse biases and continuously monitor the impact of the stress on dark current. We also explore the relaxation behavior of dark current following passive storage and the long term effect of the shadow stress on power output of the cell. We find that the reverse stress affects only the localized shunt current paths, without affecting the bulk device characteristics. The shunt current exhibits a metastable change with reverse stress, and can increase or decrease on application of reverse stress. We analyze this phenomenon in detail, and discuss the hypothesis that can explain its characteristic features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.