Abstract

Strain can tailor the band structures and properties of graphene nanoribbons (GNRs) with the well-known emergent pseudo-magnetic fields and the corresponding pseudo-Landau levels (pLLs). We design one type of the zigzag GNR (ZGNR) with reverse strains, producing pseudo-magnetic fields with opposite signs in the lower and upper half planes. Therefore, electrons propagate along the interface as "snake states", experiencing opposite Lorentz forces as they cross the zero field border line. By using the Landauer-Buttiker formalism combined with the nonequilibrium Green's function method, the existence and robustness of the reverse strain-induced snake states are further studied. Furthermore, the realization of long-thought pure valley currents in monolayer graphene systems is also proposed in our device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call