Abstract

Reverse-selective membranes, through which bigger molecules selectively permeate, are attractive for developing chemical processes utilizing hydrogen because they can maintain the high partial pressure of hydrogen required for their further downstream utilization. Although several of these chemical processes are operated above 473 K, membranes with outstanding reverse-selective separation performance at these temperatures are still to be reported. Herein, we propose a new adsorption-based reverse-selective membrane that utilizes a Na cation occluded in a zeolitic framework. The membrane developed in this work, a compact Na(+)-exchanged ZSM-5 (NaZSM-5) type zeolite membrane, enables us to selectively permeate and separate bigger polar molecules, such as methanol and water, from a stream containing hydrogen, above 473 K. On the other hand, a Na(+)-free, H(+)-exchanged ZSM-5 (HZSM-5) type zeolite membrane did not show separation properties at these temperatures. The microporous zeolite membrane developed in this study can be applied to a variety of chemical reaction systems to minimize energy consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.