Abstract
SUMMARY This paper presents a reverse-recovery analysis of parallel-connected pin diodes using a physics-based device model. Since the pin diode model is based on a physical equation, the excess carrier distribution in the drift layer is estimated. A precise device model enables us to understand the transient characteristics of the parallel-connected pin diodes. We investigated the reverse-recovery characteristics of parallel-connected pin diodes by using a physics-based pin diode model. A difference in the wiring inductance or device temperature between the two pin diodes causes a transient current imbalance. Complicated reverse-recovery current waveforms are observed under both conditions—a difference in the wiring inductance and a difference in the device temperature. They result from a difference in the starting time of forming each depletion layer between the two pin diodes. Simulation results are in good agreement with experimental ones within an error of 10% in terms of the reverse-recovery loss. We find that a precise physics-based pin diode model is very useful when designing a power electronics apparatus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.